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Abstract
The theory behind a new, three-dimensional analysis technique for the
measurement of time-integral, perturbed angular correlation (IPAC) functions
is presented. The new technique is described in relation to existing methods
and in terms of its specific application to a large, Ge-detector array. The
effective application of the new technique is demonstrated with results from
an experiment where the g factors of excited states in 252Cf, secondary fission
fragments were determined. A 252Cf source, sandwiched between two iron
foils and placed in a saturated magnetic field at the centre of the Gammasphere
detector array, was used to make IPAC measurements of prompt γ rays in order
to deduce Larmor precession angles of stopped fragments in iron. The g factor
of the Iπ = 2+ state in 104Mo was thus measured to be g = +0.248(22). This
new measurement shows a factor-of-5 improvement to the precision which has
previously been attained in more conventional experiments.

1. Introduction

The accurate measurement of excited-state g factors has long been of great experimental
significance due to the valuable role that they play in the understanding of nuclear structure.
For an arbitrary nuclear state of spin I, the g factor is defined as

g = µ

I
(1.1)
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where the magnetic moment, µ, is expressed in units of the nuclear magneton, µn, and the
spin is expressed in units of h̄. Experimental g-factor measurements serve a wide range of
purposes. They often provide valuable, direct information on the purity of single-particle
configurations in near-magic nuclei as well as an excellent means of assessing the extent of
collectivity in rotational nuclei. In addition, neutron and proton contributions to the angular
momentum can also be determined.

A wide variety of experimental techniques exist for the measurement of excited-state g

factors. Most methods are accelerator-based and the relative merits and successes of such
experiments are discussed in a recent review by Stuchbery [1]. Measurements involving
the use of fission fragments can be found, for example, in the studies of Wolf et al [2] and
Gill et al [3] where g-factor measurements were made on nuclear excited states populated
from β decay following neutron-induced fission. More recently, however, a new technique,
involving the spontaneous fission of 252Cf as a production mechanism, was employed with
the Euroball III detector array in order to determine g factors in several, A ∼ 150, secondary
fission fragments [4]. The use of a spontaneous fission source has two advantages over the
β-delayed method—access to higher initial spins and access to some of the most neutron-rich
nuclei available experimentally. The Euroball III study [4], herein referred to as Experiment
EB97, made use of a 252Cf source sandwiched between two gadolinium foils and held at a
temperature of 86 K by liquid-nitrogen cooling. The precessions of fission fragments were
deduced from time-integral, perturbed angular correlation (IPAC) measurements. However,
the analysis of experimental data was limited to the measurement of small precession angles
due to the use of a first-order approximation. Lower-than-expected hyperfine fields were also
detected and this was attributed to damage of the gadolinium lattice from fission fragments.

The experiment described in this paper, herein referred to as Experiment GS00, is an
extension of the original work done in Experiment EB97 [4]. For GS00, the gadolinium
foils were replaced with iron foils which did not require liquid-nitrogen cooling and whose
impurity hyperfine fields were known to vary less between samples. Full use was made of
the entire Gammasphere array by successfully carrying out IPAC measurements in a fully
three-dimensional (3D) analysis technique. The new analysis technique was found to be more
appropriate for the measurement of larger precession angles than the method employed for
the analysis of data from Experiment EB97 [4]. The general details of this new analysis
technique are presented in section 2 and the very specific case of a direct application to the
Gammasphere array is described in section 3.

In section 4, a new g-factor measurement for the 2+ state in 104Mo is presented. Recent
work by Mantica et al [5] has enabled analysis of the systematic behaviour of 2+-state g

factors in even–even Mo isotopes beyond the N = 50 neutron shell closure. The complete
set of results from Experiment GS00, including the previously unknown 2+-state g factors in
106,108Mo, are the subject of a forthcoming paper.

2. Theory

The measurement of nuclear magnetic dipole moments is based on the observation of the
magnetic hyperfine interaction. In semi-classical terms, the presence of an extra-nuclear
magnetic field causes the spin vector, I, to precess about the field direction at the Larmor
precession frequency, ω, given by [6]

ω(t) = −g
µn

h̄
B(t) (2.1)

where B(t) is the impurity hyperfine field strength in tesla. In this study, only static-
field measurements are considered. With particular reference to Experiments EB97 [4] and
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Figure 1. (a) The ground-state band of a generic even–even nucleus with the feeding and decaying
γ rays for the 2+ state shown. (b) A diagram showing the various angles described in the text. The
magnetic field is chosen to be along the z-axis. Two γ rays, γi and γj , are detected at spherical
polar coordinates (θi , φi ) and (θj , φj ), respectively. The azimuthal seperation between these two
γ rays is φij = φj − φi and the angle between them (in the unique plane that contains both) is θ .

GS00, the assumption that stopped fission fragments experience only static magnetic fields
is reasonable—especially for low-spin states which are assumed to be populated long after
the fragment has stopped within the host lattice. B and ω are, therefore, assumed to be
time-independent and for a state with mean lifetime τ , equation (2.1) can be rewritten as

φp = −g
Bµnτ

h̄
(2.2)

where φp is the average precession angle observed during the lifetime of the state.

2.1. γ ray angular correlations and geometry

Shown in figure 1(a) is the ground-state band of an arbitrary, even–even nucleus. The 2+ state
in such a nucleus is used as an example. It can be described as being fed by a 4+ → 2+ γ ray
from above and as decaying via the emission of a 2+ → 0+ γ ray. Figure 1(b) depicts a
situation in which feeding and decaying γ rays, γi and γj , are detected at spherical polar
coordinates (θi, φi) and (θj , φj ), respectively.

For quadrupole transitions, such as those shown in figure 1(a), the anisotropy, W , in the
relative direction of emission is given by the angular correlation function (ACF)

W(cos θ) = 1 + a2P2(cos θ) + a4P4(cos θ) (2.3)

where θ is the angle between the γ rays as shown in figure 1(b) and P2, P4 are Legendre
polynomials. The coefficients, a2 and a4, can be theoretically determined from the initial- and
final-state spin configurations but in experimental terms, they must be corrected, by factors Q2

and Q4, respectively, in order to account for the finite solid angles of both the detectors and the
source. For the specific case of stretched, quadrupole–quadrupole radiation, the theoretical
values of the a2 and a4 parameters are +0.102 and +0.0091, respectively. For Experiment
GS00, the 252Cf source was taken to be a point source of γ radiation but the 7◦ opening angle
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subtended by each detector of the Gammasphere array required Q2 and Q4 to be calculated.
Using the approach described by Siegbahn [9], the correction factors were found to be

Q2 = 0.9779 Q4 = 0.9278 (2.4)

where the dependence of Q2 and Q4 on γ ray energy was negligible. Hence, the corrected a2

and a4 values were

a2 = +0.0997 a4 = +0.0084. (2.5)

The direction of the feeding γ ray, γi , defines the alignment axis which is discussed in
more detail in section 2.3. The fundamental variable of interest in the evaluation of the ACF
defined by equation (2.3) is the cosine of the angle between two arbitrary detection events
specified by spherical polar co-ordinates (θi , φi) and (θj , φj ), respectively. From a simple,
geometric perspective, it is evident that this quantity, which, for later convenience, is labelled
as Cij , is given by

Cij = cos θ = cos θi cos θj + sin θi sin θj cosφij (2.6)

where φij = φj − φi .

2.2. IPAC for small precession angles

With the introduction of a static magnetic field, the precession of the nucleus and its
corresponding effect on the ACF can be investigated. Here, the perturbative effect of precession
is considered in terms of a simple, first-order approximation. The more complete analysis is
given in section 2.3.

A particularly simple situation emerges if the angular correlation is measured only in the
θi = θj = 90◦, xy-plane (see figure 1(b)). This situation allows equation (2.6) to be greatly
simplified since the angle between two detection events is then simply the azimuthal separation
between the relevant detectors. Here though, the general first-order perturbation scenario is
discussed where the correlation is measured between any two, general detector positions,
(θi , φi) and (θj , φj ).

By definition, the Larmor precession is taken to be about the z-axis as shown in figure 1(b).
Hence, the expected rate of change of the ACF as a function of precession can be expressed as

∂W

∂φij

� ∂W

∂(cos θ)

∂(cos θ)

∂φij

. (2.7)

The substitution of equation (2.6) and some simple algebraic manipulation leads to the
expression

δW � − ∂W

∂(cos θ)
Sij δφ (2.8)

where Sij = sin θi sin θj sinφij . δW is thus the change in γ ray intensity at (θj , φj ) caused
by a precession of the ACF through an angle δφ about the z-axis and equation (2.8) should
be taken to be valid only for small δφ. This simple, first-order approximation enables the
3D geometry of the problem to be dealt with using only two geometric parameters, namely
Cij = cos θ and Sij . The use of two geometric parameters leads to the concept of an angle
bin, Bij . Different pairs of detectors in a large array such as Euroball or Gammasphere may
possess similar angular properties and in particular, may have identical values of Cij and Sij

and therefore be physically equivalent in terms of the observed precession effects. Hence, the
data from many pairs of detectors can be said to contribute to the total data in a single angle
bin, Bij , which is unique in its Cij and Sij values. In section 3.1, the process of creating angle
bins for the Gammasphere array using three geometric parameters is described.
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For feeding and decaying γ ray energies EF and ED, respectively, the total number of
coincidence counts for an arbitrary bin, Bij , specified by unique Cij and Sij values is given by

N(Cij , Sij ) = N0εij (EF, ED)W(Cij , Sij ) (2.9)

where N0 is a normalization factor dependent on the source strength and running time and
εij (EF, ED) is the detection efficiency for the bin, Bij , at feeding and decaying γ ray energies,
EF and ED, respectively. The introduction of a magnetic field, whether it be positive (+) or
negative (−), requires a simple modification of equation (2.9) to include a first-order term for
the perturbation caused to the existing ACF, W ,

N(Cij , Sij ,+) = N0εij (EF, ED)[W + δW ]

N(Cij , Sij ,−) = N0εij (EF, ED)[W − δW ].
(2.10)

Use of the relationship δW(Cij , Sij ,+) = δW(Cij ,−Sij ,−) allows the formation of a double
ratio

ρij (Cij , Sij ) =
√

N(Cij , Sij ,+)

N(Cij , Sij ,−)

N(Cij ,−Sij ,−)

N(Cij ,−Sij ,+)
(2.11)

which, after substitution of equation (2.10), can be written as

ρij (Cij , Sij ) = W + δW

W − δW
. (2.12)

Substitution of equation (2.8) then leads to

δφ = − W

Sij
∂W

∂(cos θ)

[
ρij (Cij , Sij ) − 1

ρij (Cij , Sij ) + 1

]
. (2.13)

A useful measure of perturbations (both large and small) is the experimentally determined
quantity

$W(θi, θj , φij ) = − 1

Sij

[
ρij − 1

ρij + 1

]
. (2.14)

Note that if there is no perturbation, the double ratio ρ = 1 and therefore $W = 0. In the
small-angle approximation, $W is given by

$WSA(cos θ) = 1

W

∂W

∂(cos θ)
δφ. (2.15)

The simple, linear dependence of $W on δφ allows a fit of the experimentally determined $W

against the known, logarithmic derivative of W(cos θ) in order to determine the precession
angle. The obvious advantage in the use of double ratios lies in the removal of the inexactly
known quantities N0 and εij (EF, ED) that are associated with experimentally determined
counting rates.

The method described above was successfully employed for the analysis of data from
Experiment EB97 [4] where the Euroball III array was divided into 256 bins in the space of
Cij versus Sij in order to create 64, independent double ratios. The largest precession angle
measured during the study was δφ = 0.089(17) rad.

2.3. The general IPAC solution

The small-angle approximation described in section 2.2 can be valid only for those cases
where the precession angle is small enough to allow a simple, first-order perturbation to hold.
For the more general case, the time-dependence of the ACF and the associated geometry are
both considered in more detail. The alignment axis is still initially taken to be the direction
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of the feeding γ ray, γi , but this precesses with time, so that the angle between the alignment
axis and that of the decaying γ ray, γj , is given by %ij where

cos%ij (θi, θj , φij , t) = cos θi cos θj + sin θi sin θj cos(φij − ωt) (2.16)

which is similar to equation (2.6) but here the time integration of the perturbed angular
correlation is yet to be performed.

Substitution of equation (2.16) into the ACF of equation (2.3) and subsequent
rearrangement using multiple-angle formulae, gives the time-dependent, perturbed ACF as

Wt(θi, θj , φij , t) =
n=4∑
n=0

fn(θi, θj ) cos(n(φij − ωt)) (2.17)

where the coefficients are given by

f0 = 1 + a2
(

1
2 + 3

2A
2 + 1

2B
2) + a4

(
3
8 + 105

8 A2B2 + 35
8 A4 + 105

64 B4 − 15
4 A2 − 15

8 S2)
f1 = a2(3AB) + a4

(
105
8 B3A + 35

2 A3B − 15
2 AB

)
f2 = a2

(
3
4B

2
)

+ a4
(

35
16B

4 + 105
8 A2B2 − 15

8 B2
)

f3 = a4
(

35
8 AB3)

f4 = a4
(

35
64B

4
)
.

(2.18)

The two constants, A and B, are given by A = cos θi cos θj and B = sin θi sin θj , respectively,
and the coefficients defined in equation (2.18) can be derived by substitution of the Legendre
polynomials

P2(cos θ) = 1
2 (3 cos2 θ − 1) P4(cos θ) = 1

8 (35 cos4 θ − 30 cos2 θ + 3) (2.19)

into the ACF of equation (2.3). Using equation (2.17), the count rate, defined in equation (2.10),
is redefined as an integral such that

Nij = N0εij (EF, ED)
1

τ

n=4∑
n=0

fn(θi, θj )

∫ ∞

0
e− t

τ cos(n(φij − ωt)) dt . (2.20)

Integration over the mean lifetime of the state, τ , allows the transformation of equation (2.20)
into a quantity dependent on the average precession angle, φp = ωτ ,

Nij (φp) = N0εij (EF, ED)

n=4∑
n=0

fn(θi, θj )(
1 + n2φp

2
) [cos(nφij ) + nφp sin(nφij )]. (2.21)

This is the general equation to describe the effect of precession through a mean angle, φp, on
the count rate in some arbitrary angle bin specified by three angular parameters, (θi , θj , φij ).
Unlike the two-parameter approximation of equation (2.10), it is valid for all precession angles
in the full, 3D geometry. Comparison between equation (2.21) and equation (2.10) enables
definition of the perturbed ACF,

Wp(φp) = Nij (φp)

N0εij (EF, ED)

=
n=4∑
n=0

fn(θi, θj )(
1 + n2φp

2
) [cos(nφij ) + nφp sin(nφij )].

(2.22)

Equation (2.22) can be alternatively expressed as

Wp(φp) =
n=4∑
n=0

fn(θi, θj )(
1 + n2φp

2
) 1

2

cos(n(φij − $p)) (2.23)
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where tan(n$p) = nφp. Each term in the expansion of equation (2.23) consists of a product
of two factors. The first is responsible for an attenuation to the nth term in the expansion and
the second is responsible for a rotation of the nth term by an angle $p.

The transformation (φp, φij ) → (−φp,−φij ) applied to either equation (2.22) or (2.23)
can be seen to leave the value of Wp unchanged. This symmetry leads to redefinition of the
double ratio of equation (2.11) as

ρij =
√

Nij (θi, θj , φij ,+)

Nij (θi, θj , φij ,−)

Nij (θj , θi ,−φij ,−)

Nij (θj , θi ,−φij ,+)
(2.24)

which should be interpreted as

ρij (φp) = Wp(θi, θj , φij ,+φp)

Wp(θi, θj , φij ,−φp)
(2.25)

and this, along with equations (2.25) and (2.21), can allow a nonlinear, least-squares fit analysis
in order to extract the precession angle, φp, from the experimentally determined quantity, ρij .

In the small-angle approximation described by section 2.2, the quantity $W was defined
in equation (2.14) as a measure of perturbation. In the more general case, equation (2.14) is
still useful as a means of graphically demonstrating the effects of precession. An example
of this is shown in figure 7(b) where the simple, linear dependence of $W on Cij and δφ, as
given in equation (2.15), is compared with a more complicated dependence involving θi , θj ,
φij and φp.

An example of the application of the technique described above is presented in section 4
where the results obtained from Experiment GS00 are described.

3. Experimental details

The data from Experiment GS00 were collected over a two-week run using the Gammasphere
array of detectors at the Argonne National Laboratory in Chicago, Illinois, USA. The 101,
Compton-suppressed, Ge detectors were placed in their usual, approximately spherically
symmetric arrangement providing a total detector efficiency of ∼10%.

A 252Cf source of 100 µCitotal activity and 3 µCifission activity was sandwiched between
two, 15 mg cm−2 Fe foils. The Fe foils had previously been annealed at a temperature of
650 ◦C for 10 min. The magnetization of these foils as a function of applied field had been
measured using a magnetometer and the results showed that, with an applied field of 0.1 T,
the magnetic moment of the Fe foils had reached more than 98% of the calculated maximum
value.

The 252Cf was electroplated onto the surface of an Fe foil and a layer of indium
(200 µg cm−2 thick) was then evaporated over the second Fe foil. The layer of indium
acted as an aid to adhesion [10] between the active foil and the second Fe foil, which was
rolled on top to produce a closed source in which the fission fragments stopped in iron. The Fe–
Cf–Fe sandwich was placed at the centre of the Gammasphere array as shown schematically
in figure 2. A pair of small, permanent magnets providing a field of 0.2 T were placed on
either side of the source along a direction conventionally reserved for the beam axis into the
Gammasphere array.

The direction of the applied field was reversed approximately once every 8 h during the
experiment by rotating the magnet assembly through 180◦. Great care was taken to ensure that
the applied magnetic field was always aligned either parallel or anti-parallel to the conventional
Gammasphere beamline direction. This ensured that Larmor precessions were always about
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Figure 2. A schematic diagram of the apparatus used for the experiment. The rotatable magnet
assembly and the fixed Fe–Cf–Fe sandwich were positioned at the centre of the Gammasphere
array. The relative thicknesses of the iron, indium and californium were 15 mg cm−2, 200 µg cm−2

and 240 ng cm−2, respectively.

the beamline axis—a fact exploited in the subsequent data analysis, as described in section 2.3,
which relied on the angles of detectors being defined relative to the standard beamline direction.

During the two-week run, 9.95 × 109 events (of multiplicity 3 or greater) were recorded
and subsequently analysed offline. Approximately 48% of the total data were taken with
the applied field pointing parallel along the beamline direction (positive-field data) with the
remaining 52% taken with the applied field pointing anti-parallel to the beamline direction
(negative-field data).

3.1. The division of Gammasphere into angle bins

Figure 3(a) is a plot showing the polar and azimuthal positions of each Gammasphere detector
with respect to the centre of the array. The detectors are arranged in concentric rings centred
about the beamline axis so that, for example, the ten detectors located at θi = 90◦ make up
the central ring which occupies the z = 0, xy-plane. There are 17 such rings in total.

To create the angular bins, all possible detector pairs were considered. As was mentioned
in section 2.2, the concentric arrangement of detectors meant that many of the pairs were
found to be geometrically equivalent and were therefore combined in a single angle bin Bij .

The creation of 3882 discrete angles bins was found to be representative of all (θi, θj , φij )

combinations in the 3D geometry. A total number of 1081 independent double ratios were
created in the space of (θi, θj , φij ). The data from angle bins (θi, θj , φij ) and (θj , θi , φij )

were combined in the same double ratio since the constants, A and B, of equation (2.18) can
be shown to be invariant under the transformation θi ↔ θj .
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Figure 3. (a) The polar (θi) and azimuthal (φi ) positions of the each detector within the
Gammasphere array. (b) The distribution of angular bins in a space defined by the quantities
Cij and Sij .

Figure 3(b) shows the reduction of each (θi, θj , φij ) angle bin into a space defined by just
two geometric parameters, Cij and Sij , as defined in equations (2.6) and (2.8), respectively.
Having ignored minor rounding errors, the 3882 bins were found to project onto 645 discrete
areas in the space of Cij versus Sij . Further projection of the 3882 bins onto the Cij = cos θ
axis allowed the graphical display of results shown in section 4. All of the bins represented in
figure 3(b) occupy one of only 118 discrete positions in the linear space of Cij .

3.2. Gating conditions and fragment identification

As mentioned earlier, approximately 9.95×109 γ ray events (of multiplicity 3 or greater) were
recorded during the experiment. The appropriate data for each excited state under investigation
were identified by careful selection of all events containing the required feeding and decaying
γ rays.

The case of 104Mo is used as an example. For IPAC measurements of the 2+ state, the
appropriate feeding and decaying γ rays are the 368 and 192 keV transitions, respectively [7].
Figure 4(a) shows the total γ ray spectrum obtained in the experiment. The 104Mo transitions
mentioned above are indicated. Figure 4(b) shows the spectrum produced by consecutively
gating on the 104Mo, 2+ state feeding and decaying transitions in a 3D cube.

Spectra such as that shown in figure 4(b) were used as a guide in order to identify possible
candidates for a new, third gate which was subsequently applied to the data set. The third
gate is referred to as the isotropic gate, EI, since the emission direction was not a factor in
calculations—merely its presence in the data event. The selection of three gates, EF, ED and EI,
rather than just the two needed for an ACF measurement, served to ensure that the data under
analysis were truly from the nucleus of interest and not from another, contaminant nucleus
possessing similar γ ray transitions to those in the nucleus under investigation. The feeding
and decaying γ rays for the 2+ state in 104Mo are a good example of such a conflict since they
are identical in energy to the corresponding γ rays for the 2+ state in 108Mo. This conflict is
resolved with appropriate selection of isotropic gates and the impact is lessened anyway by
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Figure 4. (a) The total γ ray spectrum obtained from Experiment GS00. Indicated are the feeding
and decaying γ rays for the 2+ state in 104Mo. (b) The spectrum produced by consecutively gating
on the 104Mo, 2+-state feeding and decaying γ rays. Other 104Mo ground-state band γ rays are
indicated. Also marked are the intense, ground-state band γ rays from 144Ba—the complementary
fragment produced in a 4-neutron fission event.

the fact that the 108Mo production rate from 252Cf fission is down by more than a factor of 4
compared to that for 104Mo.

Generally, the most intense isotropic gates came from the ground-state band of the nucleus
concerned. Use was also made of isotropic gates from the complementary fission fragment—
the second fragment created from the binary fission of the parent, 252Cf nucleus. For 104Mo,
the complementary fragment for a 4-neutron fission event is 144

56Ba88. The 199, 331, 432
and 509 keV ground-state transitions in 144Ba [12] can clearly be identified in figure 4(b).
3-neutron fission events were also observed to occur in some cases but these were much less
common.

With isotropic gates identified, a 2D matrix, M(ED,A), was produced from event-by-
event data by setting appropriate EI and EF gates [11]. The linear axis, A, held an arbitrary
angle-bin number to represent every possible combination of (θi, θj , φij ,±) as described in
section 3.1. A gate cut on the ED-axis of M(ED,A) produced a 1D histogram which then
allowed the creation of double ratios and subsequent determination of φp as described in
section 2.3.

3.3. The direct measurement of the attenuation of Wp

Figure 5 shows theoretical double ratios for four different bin geometries as a function of
precession angle. It is evident that for any given geometry, certain values of ρ have two
different φp solutions—one solution corresponds to a relatively small precession angle and the
other to a much larger precession angle.

In certain cases, the problem arose of two, statistically equivalentφp solutions being found
in a nonlinear, least-squares fit. Rather than arbitrarily dismissing one solution in favour of
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Figure 5. Four examples of double ratios and their dependence on the precession angle, φp. The
numbers in brackets are the (θi , θj , φij ) variables calculated for different bin geometries.

another, it was possible to quantitively determine the true magnitude of the precession angle
(large or small) by explicitly measuring the perturbed ACF of equation (2.22).

Equations (2.22) and (2.23) showed that the ACF is subject to both rotation and attenuation
as a result of Larmor precession. It was possible to combine the relevant positive- and negative-
field data in such a way that the rotation term was cancelled but the attenuation term was not.
Hence measurements were made of the degree of attenuation to the a2 and a4 parameters
of the ACF. For cases where the true precession angle was large, the angular anisotropy
between successive γ ray emissions was found to be strongly attenuated. Conversely, a
genuinely small precession was found to have little or no effect on the anisotropy and hence
the measured correlation, Wp, was found to not differ significantly from that of equation (2.3).

The positive- and negative-field data were combined to produce the attenuated ACF,

Wa(Cij , EF, ED) = 1

N0εij (EF, ED)
[Nij (Cij ,+) + aNij (Cij ,−)] (3.1)

where the normalization constant, a, was introduced in order to compensate for the difference
in the amounts of positive- and negative-field data. Inspection of equation (2.22) reveals that
the simple addition of positive- and negative-field data (+φp and −φp, respectively) cancels
the effect of the rotation of the ACF but not the attenuation. The a2 and a4 parameters
were therefore measured by performing a linear, least-squares fit of the experimental data to
equation (2.3). The measured a2 and a4 were then compared with the values expected for the
unattenuated, φp = 0, case as given in equation (2.5).

In order to determine Wa, the angle-bin efficiencies, εij (EF, ED), were measured. For an
arbitrary, individual detector, i, the normalized counting efficiency at a photopeak energy, EF,
was taken to be

εd(EF, i) = ni∑101
k=1 nk

(3.2)
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Figure 6. Normalized efficiency measurements for two different detectors. The solid lines
represent fourth-order, polynomial fits to the data. The vertical axes have the same origin and
scale.

where ni is the number of counts in detector i and the sum is the total photopeak count over all
101 detectors. Hence for a single pair of detectors, i and j , the normalized counting efficiency
for a γ ray of energy EF being detected in detector i and a second γ ray of energy ED being
detected in detector j was taken to be

εp(EF, i, ED, j) = εd(EF, i)εd(ED, j). (3.3)

The normalized efficiency of the angle bin to which the detector pairing, ij , belonged was
then taken to be

εij (EF, ED) =
∑

p

εp(EF, i, ED, j) (3.4)

where the sum is over all pairs contributing to the angle bin.
The process of measuring εij (EF, ED) began with the identification of intense transitions

in the ground-state bands of various nuclei ranging from 98
38Zr60 through to 150

58Ce92. In order to
sample the same fold distribution as used for the IPAC analysis, sets of three gates were used.
Two gates, EI1 and EI2 , were isotropic and the third, Eε, was the energy at which efficiency
was being measured. The use of two isotropic gates meant that the angular anisotropy present
in the data sample was ignored and therefore had no effect on the normalized efficiencies.

A 2D efficiency matrix, Mε(Eε, I), similar to that described in section 3.2, was produced
from all event-by-event data by setting every combination of EI1 and EI2 gates possible using
the ground-state band transitions of the nuclei mentioned above. The axis, I, held the count
rate in each individual detector of the array. A gate cut on the Eε-axis of Mε(Eε, I) then
produced a 1D histogram of the count rate in each detector at energy Eε.

Figure 6 is a plot of the measured efficiencies of two detectors located in different positions
within the Gammasphere array.

Detector 56 was located in the θi = 90, central ring of detectors. Detector 107 was
positioned in one of the two outermost rings of detectors closest to the conventional beamline.
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Figure 7. (a) The attenuated ACF, Wa, equation (3.1), measured for the 2+ state in 104Mo. The solid
line is the fit to equation (2.22) which produced the result φp = +0.316(21) rad and the dashed
line is the unattenuated ACF using the a2 and a4 parameters given in equation (2.5). (b) $W,
equation (2.14). The solid line represents the expected perturbation for a φp = +0.316(14) rad
precession using the 3D analysis of section 2.3 and the dashed line is the expected perturbation
using the small-angle approximation of equation (2.15). For the sake of clarity, the 118 data points
in (a) have been averaged over small intervals in cos θ to produce the 20 data points of (b).

Consequently it was found to be strongly affected by the presence of the permanent magnets
shown in figure 2, especially at low γ ray energies.

Fourth-order polynomial fits, such as those shown in figure 6, were performed for all the
detectors of the Gammasphere array. These were used to determine the energy-dependent
counting efficiencies for each pair of detectors and then, by simple summation over relevant
pair combinations, for each of the 3882 angle bins of Gammasphere.

An example of the use of efficiency curves in the direct measurement of Wa is presented
in section 4.

4. Results

To demonstrate the effective application of the techniques described above, results for the 2+

state in 104Mo are presented as an example. The lifetime of the state is τ = 1.040(59) ns [8]
and the g factor has previously been measured by Menzen et al [13] to be g = +0.19(11).

Figures 7(a) and (b) are the results of the IPAC measurements for the 2+ state in 104Mo.
Analysis of the double ratios, ρij , as defined in equation (2.24), gave the precession angle as
φp = +0.316(21) rad.

The data shown in figure 7(a) were generated using equation (3.1) and then fitted to the
ACF of equation (2.3) to produce the results

a2 = +0.0794(86) a4 = +0.0212(23). (4.1)
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A useful quantity, which incorporates both the a2 and a4 parameters, is the anisotropy,

A = W(180◦)
W(90◦)

− 1

= 0.1368(24)
(4.2)

which is only slightly reduced from the unattenuated anisotropy, A = 0.1625, as calculated
using the theoretical maximum values, a2 = 0.0997 and a4 = 0.0084, and is, therefore,
consistent with a relatively small precession angle of φp = +0.316(21) rad. Figure 7(b)
clearly justifies the use of a more rigorous analysis technique as opposed to the small-angle
approximation. The data points are better described by a full, 3D analysis rather than a simple,
first-order perturbation.

Using the precession angle of φp = +0.316(21) rad and a hyperfine impurity field of
B = −25.6(1) T for Mo atoms implanted in an Fe host [14], equation (2.2) revealed the
g factor to be

g = +0.248(22) (4.3)

which is in good agreement with the previously measured value of g = +0.19(11), as measured
by Menzen et al [13], and which also represents a factor of 5 improvement to the precision
with which the g factor has been previously measured.

5. Conclusion

This paper describes the general formalism of IPAC measurements and its application to a
multi-element detector array in a proper, 3D analysis. Details have been provided on the
analysis technique and its relation to existing methods. Experimental results in the form of an
IPAC measurement on prompt γ rays from 104Mo have been presented in order to demonstrate
the effectiveness and suitability of the new method. The full experimental results will be
presented in a forthcoming paper.
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